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The Periodically Kicked Rotator: 
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We explore the properties of the quantum kicked rotator, its classical equivalent 
being the standard map. Its behavior, as found by computer studies, depends 
very much on the strength of the external forcing. At low strength it is 
seemingly recurrent in the sense of Hogg and Huberman. However, its energy 
increases with time at large forcings. For quantum systems, a unitary map 
defines the evolution over one period of time. The spectrum of this map in an 
infinite space does not seem to change continuously when one approaches the 
ratio of the frequencies of the external and of the unperturbed system by 
rational approximations of the golden mean. 
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INTRODUCTION 

Since the work  o f  Casa t i  et al., (l) several  works  have  been devoted  to the 

unders tand ing  of  t ime-dependen t  q u a n t u m  sys tems b e y o n d  the usual  per tur-  

ba t ion  expans ions .  One  of  their  mo t iva t i ons  was  to s tudy whether  the 

complex  d y n a m i c s  o f  c lass ica l  non in teg rab le  gener ic  sys tems has  any coun-  

te rpar t  in q u a n t u m  systems.  A mos t  popu la r  mode l  for this s tudy is the r igid 

ro ta to r  submi t ted  to per iod ic  kicks.  Its t ime-dependen t  Schr6d inger  equa t ion  

(in d imens ion less  uni ts)  is 

c9~ 1 ~21/j 
6t -- 2 902 + kV(O) S ( t ) ~  
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where the wave function qJ(0) is smooth and 2Ir periodic [q/(0 + 27r) = ~t(0)]. 
Here k measures the strength of the time-dependent perturbation, V(O) the 
position dependence of the potential [most often V(O) = cos 0] and S(t) is a 
sum of kicks: 

+ o o  

S ( t ) =  ~. 6 ( t - N T )  
N - - - - o o  

with T being the time lag between two consecutive kicks. 
The classical counterpart of this model, described by the so-called 

"standard mapping, ''~2) is a well-known example of chaotic behavior. The 
energy of the classical kicked rotator grows with time in a chaotic way 
following, in the mean, a diffusion law E ~ t provided the perturbation is 
sufficiently large. 

In the quantum case several different behaviors have been isolated. The 
question of the convenient initial condition for observing this kind of 
behavior is discussed below. For the moment it is enough to say that we 
consider everywhere the energy growth for initial conditions of finite energy. 

In the work of Casati et al., (1) extended later by Izrailev and 
Shepelyansky, <3) the phenomenon of quantum resonance has been observed. 
Whenever the period of the kicks T is a rational multiple of 4n the energy 
grows quadratically with time: E ~ t 2. Whenever the resonance condition is 
not satisfied it is tempting to call the case nonresonant. However, various 
behaviors of the energy are still possible and one must be particularly 
careful. Working with an irrational T/4n and with moderate perturbation, 
Chirikov et al. (4) have found numerically a saturation phenomenon. Namely, 
the energy starts growing with time but rapidly the growth slows down and 
proceeds with a much smaller rate if there is any growth at all. On the other 

hand  Hogg and Huberman have introduced the so-called recurrence 
property. (~) They have shown that, in what they called the "nonresonant" 
case, the energy must come back arbitrarily close to its initial value during 
the evolution of the system. However, what Hogg and Huberman called 
"nonresonant" may turn out to be very restrictive (beyond excluding what is 
called resonant by Izrailev and Shepelyansky). The evolution from time t to 
time t + T defines a unitary map U on the L 2 space of wave functions on 
[0, 27@ The system is nonresonant, in the sense of Hogg-Huberman,  if a 
complete and discrete set of eigenfunctions on L 2 exists such that 

U~. = ei'~"O., n E N, a .  ~ 

For instance it is not clear that such a property holds for the Hamiltonian of 
the kicked rotator for some irrational T/47c, although the resonant case of 
Izrailev-Shepelyansky is excluded because the spectrum of U is continuous if 
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T/4n is rational. The numerical computations of Chirikov et aI. for irrational 
T/4n show an energy growth, as we mentioned above. Estimates of the 
recurrence time t6) in some realistic cases have yielded impressively large 
times, which allows one to conclude that the recurrence, although present is 
quite sensitive to the magnitude of the perturbation. 

It is true that unitary operators have a mathematically well-defined 
spectrum, and the question "what is the topology of the spectrum of the 
unitarity operator at hand" is well posed. We tried to answer it by seeking 
regularities when approaching the golden mean for T/47r with increasing 
accuracy. When one does that, the quasienergy spectrum is made of an 
increasing number of bands, the thickness of each band decreasing much 
more rapidly than the inverse number of bands. And our findings point out 
the extreme irregularity of this band structure when the rational approx- 
imation of the golden mean is improved. This is reminiscent of the properties 
of the quantum map of Berry and Hannay. tT) Owing to this irregularity, 
predictions about the spectrum are quite uncertain. Owing to absence of any 
apparent self-similarity in this spectrum, it seems reasonable to assume that 
this spectrum is not singular continuous. Moreover, tS) a Cantor-like structure 
should be expected only for a particular value of the coupling, at least by 
analogy with the localization problem in quasiperiodic potentials. Thus, one 
may expect that this spectrum is dense, at least in some part of the circle. It 
is certainly so for k = 0  and almost all irrational (T/4~) by Weyl's 
theorem. ~1~ In this case, the quasi-energies are of the form (m2T/470, m C Z, 
(x) = fractional part ofx.  The numbers (m2T/4n) are uniformely distributed 
between 0 and 1 as m runs through 7/. 

Now, the above considerations concern mainly values of T/4n which 
are "good" irrationals such as the golden mean. However, recently Casati 
and Guarneri (9) have investigated the quasi-energy spectrum for values of 
T/47r which, while irrational, are "close" to rational. They have shown that 
one can find a set of irrational numbers, such that the quasi-energy spectrum 
be continuous. So for such values of T/4n, the energy growth of the system 
under the external perturbation is unbounded. 

The notion of spectrum and of set of eigenvalues (and eigenfunctions) 
are sometimes considered as synonymous, by analogy with the finite dimen- 
sional case. But it is far from obvious that, in the present case, any kind of 
eigenfunction exists. The existence of such eigenfunctions---even in an 
extended space, as L 1 instead of L2--would  imply some regularity in the 
spectral properties of U as T/4n approaches the golden mean. In the absence 
of such regularities, we conjecture that nothing like eigenfunctions exist for 
(most) irrational T/47e, this being likely the "typical" situation in infinite 
dimension space. This is strengthened again by the consideration of the k = 0 
situation. Consider a sequence of rational approximations of the golden 
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mean T/4n, say, p,,/q,,. We already said that the quasi-energies are the 
numbers (m2pn/q,,), m ~ Z. One may take Pn= 1 if pn and q~ are mutually 
prime. The rational (m2/q,,) are 1/q n times the quadratic residues of qn: these 
quadratic residues are integers r, 0 ~< r < q~ in the form (m 2) modulo qn. For 
instance, the quadratic residues of 13 are {0, 1, 3, 4, 9, 10, 12}. Thus each 
quasi-energy corresponds to the hybridation of an infinite number of eigen- 
functions of the unperturbed problem labeled by integers with the same 
quadratic residues. These discrete quasi-energies give bands at nonzero k, as 
the energy of bounded electrons in isolated molecules gives, in crystals bands 
by hybridation. But, as one increases qn to approach more and more closely 
T/4n, this hybridation process has no clear-cut limit. The number 
(m2)modqn/q,~ become dense on [0, 1] by Weyl's theorem. But those 
numbers that are close to an irrational p correspond to completely different 
m's as q, changes, again due to the rather irregular character of 
(m z) mod q,.  

Attempts have been made "~) to relate the property of time-dependent 
systems as the kicked rotator to the problem of quantum localization in one- 
dimensional potentials. Indeed the discrete recurrence equations [see below 
Eq. (7)] of the time-dependent model may be seen as some Schr6dinger-like 
equation in a discrete space. But the quasi-energies a ,  are not really energies 
on the half real line, because they belong to a circle. Thus the hybridation 
phenomena are much more important than for wavepackets with energies in 
the usual sense. Owing to the circle topology, the neighborhood of a given 
quasi-energy is much "larger" in a sense that the one of an energy. This 
leads one to believe that the connection between localization problems and 
quantum rotator is not as tight as it could appear, on the basis of formal 
similarities. 

In the present paper we reconsider the problem of the kicked rotator 
from various points of view. As we will present several numerical results we 
will start by checking in detail the exact predictions that can be made on the 
resonant case. Apart from the intrinsic interest of such a study this will 
serve as a stringent test for our numerics. We then will analyze the 
nonresonant case and show how the pictures of Chirikov et al., on the one 
hand, and Hogg-Huberman,  on the other hand, can be reconciled: for k 
sufficiently large, the energy increases with large fluctuations, while at small 
k the energy fluctuates without any apparent growth almost exactly as in the 
recurrence picture. Motivated by recent investigations on the localization 
problem we have examined the spectrum of eigenvalues of V by approaching 
an irrational T/4z~ [here the golden mean (X/ '5 -  1)/2] by rational approx- 
imations of the Legendre continued fractions. We have not been able to 
discover any rule for extrapolating the quasi-energy spectrum, even approx- 
imately, from one Legendre approximation to the next one. In the conclusion 
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of this paper  we recapitulate our results and present physical  systems whose 
behavior could be described by the dynamics of  the kicked rotator.  

THE M O D E L  

Let us start with the Hamil tonian of  the periodically kicked rotator:  

�9 c ~  1 cqzqJ 
t St - 2 ~0 ~ + kV(O) S(t)~, (1) 

Here S(t)= ~=~_co 3(t--NT). Introducing the dimensionless t ime r = t iT 
we obtain 

+ c o  

~qJ~3r i T2 ~2q/802 ikV(O) ~ 6 ( r - N ) t y  (2) 
N =  --oO 

In order to integrate Eq. (2) we distinguish a two-step evolution: between 
successive kicks and at the kicks. The integration between kicks can be 
simplified if one expands qJ on the basis of  the wave functions of  the static 
rotator:  On = (O In)  = eim~ 

e i n O  

qJ(O, t) = n=-co an(t ) (2~z),/2 (3) 

Introducing Vnm = (nl V(O) Ira) we obtain 

+ c o  

Oan i T n 2 a " - i k S ( r )  ~ Vnmam (4) 
m =  - c o  

By writting further a n = e-i~rn2/Zb n we have 

+ c o  

~ b n - - i k S ( r )  ~ V~Znmbn (5) 
cqr m= -co 

with W,m = V,m exp[i(n 2 -- mZ)(rT/2)]. 
Between kicks S(t)= 0 and we have simply ~b,/~r = 0. Thus b~(N)= 

b+(N - 1) where N denotes the kick and + ( - )  the moment  just after (before) 
the kick. At the kick itself Eq. (5) can be integrated (over an infinitesimal 
interval which encompasses the kick) to give 

b+(N) -- bn(N) = - i  T mnm(N) b+m(N) + Z mnm(N) bTn(N) (6) 
tit 

822/37/1-2-7 
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or equivalently, 

k 
bn+ (N) -~- i - - ~  Wnm(N) bm+(N) 

2 m 

. k  
= b+(N- 1) - t - ~  Wnm(N) b+m(N- 1) (7) 

We have thus obtained a simple mapping which relates the wave-function 
components at two successive kicks. Dropping the superscript + and with 
obvious matrix notations the mapping (7) can be written 

I -  (ik/2) W(N) 
b(N)-  b (N-  1) (8) 

I + (ik/2) W(N) 

We remark thus that we have an explicitly unitary scheme for the iteration of 
the wave function components. The matrix inversion involved can easily 
(and accurately) be performed using Gauss'  algorithm and can be 
particularly simplified if one chooses the form of V(O) so as to cancel most 
of the off-diagonal matrix elements. The usual choice V(O) = cos 0 is not the 
best one from this point of view, leading to complicated matrix elements. A 
far simpler choice is V(O)=(2/k)arctan[(k/2)cosO] (which was also 
proposed by Prangeetal. ~1~)) and which leads to matrix elements for the 
kick action of the form V,m=J,,m~. Incidentally, for small k, the two 
potentials are equivalent. 

As far as the numerical implementation of the iteration scheme is 
concerned, we must stress the fact that unitarity is not a crucial test of the 
accuracy of our method, being explicitly built into the algorithm. It is in fact 
conserved up to the accuracy of the computer arithmetic. A far more 
important contraint is due to the spreading of the wave function which 
requires the presence of several hundred terms in the expansion (3) of ~,. The 
space needed increases very rapidly with k, and at some cases up to 10,000 
components were necessary (although because of the symmetry between a n 
and a_ n the working space dimensions can be reduced by a factor of 2). 

STUDY OF THE RESONANT CASE 

In the original study of Casa t ie ta l .  the case of the fundamental 
quantum resonance was studied in detail. It corresponds to a period, for the 
kicks, which is an integer multiple of 4n: i.e., T = 47rm. One remarks easily 
that in this case the phase e -i~'n2/2 which gives the evolution of the 
amplitudes a n between kicks is equal to 1. Casati et al. have proven that in 
this case the energy grows quadratically with time E ~ r 2. 
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Izrailev and Shepelyansky have extended this result to the case of a 
resonant period of the form T =  41r(p/q) with integer p and q. In this case 
the phases recover the value 1 only after q kicks but this leads again to a 
quadratic energy growth. E = r / r 2 +  O(r). They have also presented a 
numerical evaluation of the growth coefficient t/, as well as asymptotic 
estimates of the latter, which, however, were not verified numerically in the 
small k limit. 

In our study we have examined in detail the casep/q = 8/13. In Figs. 1, 
2, and 3 we present three typical pictures for the behavior of the energy as a 
function of time. The values are respectively k = 0.8, 2.0, 4.8. One notices 
that for the smaller value of k the energy growth is imperceptible at the 
beginning. If we have stopped our evolution at ~ ~ 100-200 we would have 
obtained a picture of energy recurrence "~ Ia Hogg-Huberman." On the 
contrary with increasing k the recurrence behavior disappears and for the 
larger values of k we obtain a quadratic growth with practically no wiggles. 
This behavior reflects the crucial dependence of the energy on k, a feature 
which we will encounter again in the non resonant case. 

A systematic study of the energy growth as a function of k has allowed 
us to verify the asymptotic estimates of r/, proposed by Izrailev and 
Shepelvyansky. For k ~ q they have found that t /~  k 2q, while for k >> q 

0,55 I 

i 

U 

Fig. 1. Energy, E, for the rotator as a function of time (number of kicks) nt, for 
T/4n= 8/13 and k=0.8. 
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Fig. 2. Same as in Fig. 1 for k = 2 .  
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Fig. 3. Same as in Fig. 1 for k = 4 . 8 .  
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Fig. 4. Factor r /o f  the quadratic energy growth (E ~ qr z) as a function of k (in logarithmic 
scales) for T/47r = 8/13. 

/7 ~ k (Actually the aforementioned authors have obtained t / ~  k 2 in the 
latter case, using the potential V = k cos 0. The value/7 ~ k is associated to 
the potential V =  2 a r c t an [ (k /2 ) cos  0] used in the present work.) In Fig. 4 
we present the results for/7 as a function of k, over a large range of values of  
the latter, which allows us to reach the two asymptot ic  limits, materialized 
on the figure by the two straight-line asymptotes.  One remarks readily that  
the agreement is quite satisfactory for large as well as for small k, i.e., for 

k to q ~ k 2q. behaviors of/1 ranging from/1 k-.oo k-~0 

One remark is in order at this point. The term quantum resonance may 
be somewhat  misleading as it could be interpreted as a phenomenon present 
only in the quantum case. This is, however, not true. Quadrat ic  energy 
growth can be present in the classical case as well. However,  in the latter 
case, it corresponds to highly unstable trajectories, and thus very difficult to 
study numerically. 

THE NONRESONANT CASE 

As explained before, this is the case where the period of  the kicks is not 
commensurate  with the natural  period of the system, that is, T/47r is 
irrational. Indeed this is the most  general case. However,  as we are interested 
in the limit t--, oo, one could imagine that  the energy E(t, T/4n) with given 
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initial conditions behaves as ~0(t) for t ~ co and almost all T/4~, even though 
the average of  E(t, T/4~), say, q~(t), over a set of  values of  T/4n of finite 
measure at a given time is such that O~(t) t2oo q~(t). 

Below we shall give the numerical behavior we did find for the energy 
as a function of  time; then we shall try to interpret our results. 

N U M E R I C A L  RESULTS: ENERGY GROWTH 

Following a widely spread habit, we have chosen for T/4n the golden 
mean V / 5 -  1/2. This irrational number can be represented as 
lim,-~oo Pn- lIP,, {Pn} being the Fibonacci  with P0 = P1 = 1 and P~ + ~ = 
P ,  + P , - 1 .  From the point of  view of  continued fraction expansion, the 
golden mean is, in a sense, the "most  irrational" number. We then computed 
the energy E(t, P,_ JP, ;k )  with the ground state ~,(0)= 1/(270~/2 as initial 
condition in Eq. (1). For  a given value of  1 and given t 0, we observed that 
the curve E(t, Pn- ~/P, ; k) has a rather well-defined limit as n becomes large 
for any t is the interval [0, to]. We took this limit value as the value of  
E(t, T/47r; k) where T/4n is the golden mean. 

Using the limiting process in the approximation of  the golden mean 
(which we recall depends on the time interval to for given k) we have 

Fig. 5. 

nL 

Energy as a function of time for T/4n a rational approximation of the golden mean 
(here T/47r = 17,711/28,657) and k = 4. 
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performed several calculations at selected values of k. For low k, typically k 
smaller than 10, the energy fluctuates as a function of time without any 
secular trend over a time interval at 1000 kicks (Fig. 5). A similar trend was 
observed in the case of low-order resonances. So at low k's a recurrence 
behavior d la Hogg-Huberman of the energy is observed. 

At larger k the energy increases first very rapidly, roughly linearly, the 
initial slope increasing with k. However, this phenomenon persists only for 
about 50 kicks, and then the energy growth saturates. For k's of the order of 
~100 a small energy growth accompanied by large fluctuations is observed 
after the initial burst (Fig. 6). At still larger values of k the relative impor- 
tance of the fluctuations becomes much larger, and the secular trend of the 
energy toward growth, although present, is not always easily discernible 
(Fig. 7). A qualitatively similar behavior was observed by Chirikov et al. ~4) 

At this point we must remark that it is quite difficult to investigate 
numerically, with a satisfactory degree of accuracy, a law for the final 
growth of the energy, and it is also extremely difficult to know if there exists 
a sharp transition from a low-k regime, without energy growth, to a high-k 
regime, where the energy grows with time. Let us assume, for instance, that 
the energy behaves as 

E ( t , ~ ; k )  ~t~tUD(k), ~t~ l 

9 O O  

8 0 0  - 

7 0 O  - 

5 0 C  - 

5 0 0  - ) 

i 

200 - 

~00 - 

0 - 

~o ~o ~o ,oo zoo ~o 
n L  

Fig. 6. Same as in Fig. 5 fork=80. 
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S a m e  as  in F ig .  5 fo r  k = 160 .  

The function D(k), if not zero near k = O, should be transcendentally small 
for k ~  0+, as, for example, e -k)k2, or exp(-ko/k), because this kind of 
energy growth is out of reach of expansions in powers of k. Actually this 
kind of transcendentally small effect is quite common (~2~ in adiabatic 
theories. In the present case, one could think that, near k = O, the slow time 
variation is due to the kicking: very approximately U is of the form 
(1 + ikH) near k =  O, so that U" differs from 1 for kn ~ 0(1), that is for 
times of order k -1. Nonadiabatic phenomena, as (perhaps) the energy 
growth of the rotator, are typically of order exp(-tfast/tslow), where /fast is 
the fast time scale and tstow the slow time scale, tfast ~ tslow. If one takes 
tfast ~ 1 and tslow ~ l/k, one finds D(k) ~ exp(-ko/k ). This reasoning, unfor- 
tunately, is too rough to predict, for instance, the exponent~. Furthermore 
one cannot distinguish numerically between a function growing from zero as 
e -k2~ and a function vanishing exactly between zero and, say, k~ ~ 0.1k 0 
followed by a smooth behavior after kl .  

To test sensitivity of our results to the peculiarities of the model, we 
have performed the following "experiment." In the numerical algorithm, the 
unperturbed Hamiltonian occurs only through the phase factors: 
exp(im2T/2). We have added random phases em(O < e m < 1) to rn2T/2, 
destroying thus the resonance condition for rational T/4n. If  one establishes 
the analogy with the 1 - D  localization problem, this small amount of 
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Fig. 8. Energy as a function of time for T/47r and k = 8 after the addition of small random 
shifts to the unperturbed spectrum. 

randomness is a strong perturbation indeed, as it leads to exponential 
localization. In the present case the addition of  random em'S changes 
dramatically the pattern of  energy growth in the resonant case. However, the 
general trends are the same as in the nonresonant case: no energy increase 
for low k, and increase of  energy with large fluctuations for larger values of  
k (Fig. 8). 

Thus our results agree with what was previously known. Nevertheless, 
we have shown that there exists a very strong sensitivity with respect to the 
value of  k (a point that has not been raised until now). The various 
behaviors, recurrence or growth saturation, that were presented before, are 
merely manifestations of  the dependence of  energy on the perturbation 
magnitude k. 

T O W A R D  AN INTERPRETATION OF OUR RESULTS 

As explained before, it is still difficult, if not impossible to interpret our 
results in the light of  available theories. These theories make some 
assumptions for the quasi-energy spectrum, that is, for the spectrum of  the 
one step unitary operator. ~3) 
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For the present model this spectrum is known in two limit cases. First 
of all if k = 0 (no kicks), this spectrum is simply deduced from the set of 
energy levels {Era} of the free rotator. The quasi-energies are (m2T/4n), 
where, as usual, (x) is the fractional part ofx.  From Weyl's theorem, the 
numbers (rn2T/4n) are uniformly distributed in [0, 1[ as m varies in IN for 
almost all T/4~r. The precise diophantine condition on (T/4n) for which this 
is true poses a seemingly nontrivial problem, but we can be sure that 
(m2T/4n) is not uniformly distributed if T/4n is rational. 

If k 4= 0, the quasi-energies are known in the resonant case. They fill 
continuous bands. We have already said that a possible connection has been 
claimed between the present problem and the quantum localization in one- 
dimensional quasiperiodic potentials. In this last case, it is now understood 
that in some cases the energy spectrum has a Cantor-like structure and this 
appears step by step when the irrational ratio of the two spatial frequencies 
is approached by rational approximations of increasing accuracy. ~8) These 
critical values are at the transition between a discrete and a continuous 
spectrum, except when the irrational frequency of the quasiperiodic potential 
is a Liouville number. 

We sought regularities in the quasi-energy spectrum by approximating 
the golden mean for T/4n by the ratios of successive Fibonacci numbers. 
Practically, we took 2/3, 3/5, 5/8, and 8/I3. 

As shown in Fig. 9, the band structure of the quasi-energy spectrum at 
these resonances have no apparent ressemblance. In particular the band 
splitting leading (eventually) to a Cantor set does not show up. 

1.0 

Q.E. 

0.0 

- 1 . 0  
2/3 3/5 5/8 8/13 

Quasi-energy spectrum, in units of  n, for the first small rational approximations to Fig. 9. 
the golden mean. For p/q = 5/8 all the bands are doubly degenerate. For p/q = 8/13 one band 
is doubly degenerate. 
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This could be explained as follows. The bandwidth of each band is 
approximately of order (]c/q) q for large denominators q in the rational 
approximation of an irrational (T/4z 0. 

When one considers higher and higher approximation of the golden 
mean with qn ~ (1/2)[(1 + V/5)/2] ", the width of the bands decreases much 
faster than in a geometric fashion. This excludes a Cantor structure with a 
more or less constant reduction ratio at each step, as the one occurring in the 
localization problem. Moreover, as the bands have a thickness A n ~ ( k / q n )  q", 
they manifest in a sense the behavior of the system over time scales of order 
A2 ~. For such times, the band structure at order ( n - 1 )  is destroyed, 
because A n ~A2 ~ ~> 1. This is because the bands of the quasi-energies of the 
matrix U N (N positive integer) have a thickness equal to N times the 
thickness of those of U. 

Thus, our numerical results and the previous considerations indicate 
that no point wise limit of the quasi-energy spectrum exists as n increases. In 
some sense, at each arithmetic approximation of (T/4~r), this spectrum shows 
a new pattern, almost independent of the spectra at lower approximations. 
Indeed, this leads one to think that, as n increases, there are statistical rules 
for generating these quasi-energy spectra. But these rules are, for the 
moment, unknown, and out of reach of our computational power. 

The lack of regularity of the time dependence of the energy for the 
nonresonant case should be explained along the same lines: at time t, the 
system is sensitive to the structure of the quasi-energy spectrum at a rational 
approximation of (T/4~r) with a denominator of order t-~, and this structure 
is very sensitive to this rational approximation. 

Nevertheless, for the moment, all these considerations are very 
qualitative. We hope to make them more definite in the future. 

C O N C L U S I O N  

Our numerical study clearly indicates the great importance of the 
strength of the perturbing force in these time dependent quantum problems: 
at low intensities, and except for resonance with small denominators, the 
energy seems to be recurrent, although for large intensities this has a 
tendency to grow with time, either as t 2 in the resonant case or more slowly 
in the nonresonant case. 

It is of interest to speculate about the applicability of this kind of theory 
to experiments. Perhaps the most natural idea for this is to think at atomic 
or molecular physics, the external force being due to an electromagnetic 
wave. Unfortunately, the dimensionalizing parameter for the strength of this 
wave will be the electric field in a Bohr atom (~ 1 V over a few angstr6ms), a 
huge field when compared to electric fields in electromagnetic waves. And it 
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should be difficult to reach experimental ly  a domain  where nonper turbat ive  
effects (with respect to the ampli tude of  the external field) were important .  
Nevertheless the internal electric field is much lower than 1 V/1 A in the so 
called Rydberg  states (hydrogenic state with a huge pr incipal  quantum 
number),  and this should be considered as a candidate  for such nonpertur-  

bative effects. 
One might t ry also to apply  this kind of  theory to macroscopic  

quantum states. To stay as close as possible to the quantum rotator ,  one 
should think at a superfluid loop in its ground state at t = 0 and then 
accelerated per iodical ly  paral lel  to its own plane. Indeed, this could be 
compared  with the quantum rotator  if no vortex were generated, so that  the 
only excitat ion of  the system were quanta  of  circulat ion around the loop. 
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